A2 Further Mathematics Unit 5: Further Statistics B Solutions and Mark Scheme

$\begin{aligned} & \text { Qu. } \\ & \text { No. } \end{aligned}$	Solution	Mark	AO	Notes
5(a)	$H_{0}: \mu_{M}=\mu_{F} ; H_{1}: \mu_{M} \neq \mu_{F}$	B1	AO3	
(b)	Let $X=$ male weight, $Y=$ female weight $\begin{gathered} \left(\sum x=39.2 ; \sum y=46.6\right) \\ \bar{x}=4.9 ; \\ \bar{y}=4.66 \end{gathered}$	B1 B1	$\begin{aligned} & \mathrm{AO} 1 \\ & \mathrm{AO} 1 \end{aligned}$	Award m0 if no working seen
	$\begin{aligned} \text { SE of diff of means } & =\sqrt{\frac{0.5^{2}}{8}+\frac{0.5^{2}}{10}} \\ & =0.237 \ldots \end{aligned}$	M1 A1	$\begin{aligned} & \mathrm{AO} 2 \\ & \mathrm{AO} 1 \end{aligned}$	
	$\begin{aligned} & \text { Test statistic }=\frac{4.9-4.00}{0.237 \ldots} \\ &=1.01 \\ & \text { Prob from tables }=0.1562 \end{aligned}$	m1 A1 A1	$\begin{aligned} & \mathrm{AO} 1 \\ & \mathrm{AO} 1 \\ & \mathrm{AO} 1 \end{aligned}$	From calculator, prob $=0.1558$ FT 'their' test statistic From calculator, p-value $=0.3116$
	p-value $=0.3124$	B1	AO2	FT 'their' p-value
	Insufficient evidence to conclude that there is a difference in mean weight between males and females.	$\begin{gathered} \text { B1 } \\ {[10]} \end{gathered}$	AO3	
6(a)	The differences are $\begin{array}{llllllllll} 5 & -2 & 8 & 10 & -6 & 12 & -4 & 7 & 9 & 1 \end{array}$	B1	AO3	Attempting to rank absolute values All correct
	The signs may be omitted at this stage. The ranks are $\begin{array}{llllll} 4 & 2 & 79 & 5 & 10 & 3681 \end{array}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	$\begin{aligned} & \text { AO3 } \\ & \text { AO1 } \end{aligned}$	
	$\begin{aligned} W & =\text { Sum of positive ranks } \\ & =4+7+9+10+6+8+1=45 \end{aligned}$ The critical value is 44 .	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { B1 } \end{aligned}$	$\begin{aligned} & \text { AO3 } \\ & \text { AO1 } \\ & \text { AO1 } \end{aligned}$	
(b)	The conclusion at this significance level is that Method B gives on average a higher reading than Method A because $45>44$	B1 E1 [8]	AO3 AO2	

$\begin{aligned} & \text { Qu. } \\ & \text { No. } \end{aligned}$	Solution	Mark	AO	Notes
7(a)	$E(X)=\theta+3(1-3 \theta)+5 \times 2 \theta$	M1	AO1	
	$=2 \theta+3$	A1	AO1	
	$\operatorname{Var}(X)=\theta+9(1-3 \theta)+25 \times 2 \theta-(2 \theta+3)^{2}$	M1	AO2	
	$\begin{aligned} & =\theta+9-27 \theta+50 \theta-4 \theta^{2}-12 \theta-9 \\ & =4 \theta(3-\theta) \end{aligned}$	A1	AO2	
(b)(i)	Consider $E(V)=\frac{E(\bar{X})-3}{2}$	M1	AO2	
	$\begin{gathered} 2 \\ 2 \theta+3-3 \end{gathered}$			
	2	A1	AO2	
	(Therefore V is unbiased)			
(ii)	Var (\bar{X})			
	$\operatorname{Var}(V)=\frac{4}{4}$	M1	AO3	
	$-\frac{\theta(3-\theta)}{}$			
	n	A1	AO1	
(c)	Y is $\mathrm{B}(n, \theta)$	M1	AO3	
	So $E(Y)=n \theta$	A1	AO2	
	$E(W)=E\left(\frac{Y}{n}\right)=\theta$	A1	AO2	
	(Therefore W is unbiased)			
	$\operatorname{Var}(W)=\frac{\operatorname{Var}(Y)}{2}$	M1	AO2	
	$\overline{n^{2}}$			
	$\theta(1-\theta)$	A1	AO1	
	n			
(d)	$\frac{\operatorname{Var}(V)}{\operatorname{Var}(W)}=\frac{\theta(3-\theta)}{n} \div \frac{\theta(1-\theta)}{n}$	M1	AO3	
	$\overline{\operatorname{Var}(W)}-\frac{n}{(3-\theta)} \cdots n$	M1	AO3	
		A1	AO1	
	It follows that W is the better estimator since it has the smaller variance	B1	AO2	
		$\begin{gathered} \text { B1 } \\ {[17]} \end{gathered}$	AO2	

