A2 Further Mathematics Unit 5: Further Statistics B

Solutions and Mark Scheme

Qu. No.	Solution	Mark	AO	Notes
1(a)(i)	Upper quartile = $\mu + 0.6745\sigma$ = 32 + 0.6745 × 4 = 34.7	M1 A1	AO3 AO1	
	This is the time that is exceeded on 25% of the days.	E1	AO2	
(ii)	Let $T = X_1 + X_2 + X_3 + X_4 + X_5$			
	Then $E(T) = 160$	B1	AO3	
	Var(T) = 5Var(X)	M1 A1	AO3 AO1	
	Var(T) = 80 P(T > 170) = 0.132	B1	AO1 AO1	
(b)	Consider $U = X - 2Y$	M1	AO3	
	E(U) = -4 Var(U) = Var(X) + 4Var(Y)	A1 M1	AO1 AO3	
	= 32	A1	AO1	
	We require $P(U > 0)$	M1	AO3	
	= 0.240	A1 [13]	AO1	
2()				
2(a)	$\Sigma x = 691, \ \Sigma x^2 = 47762.32$	D.I	101	
	$\hat{\mu} = 69.1$	B1	AO1	
	$s^{2} = \sum \frac{x^{2}}{n-1} - \frac{(\sum x)^{2}}{n(n-1)}$	M1	AO3	
	= 1.58	A1	AO1	
	DF = 9	B1	A01	
	t value = 2.262	B1	AO1	
	Standard error = $\frac{s}{\sqrt{n}} = \frac{\sqrt{1.58}}{\sqrt{10}}$	B1	AO1	
	Confidence limits = $\overline{x} \pm t \times \frac{s}{\sqrt{n}}$	M1	AO3	
	$= 69.1 \pm 2.262 \times \frac{\sqrt{1.58}}{\sqrt{10}}$	A1	AO1	
	leading to [68.2,70.0]	A1	AO1	
(b)	The value of μ either lies in the interval or it does not there is no question of a probability	E1	AO2	
	does not, there is no question of a probability being involved.			
	EITHER			
	The confidence interval is an observed value of a			
	random interval which contains μ with probability 0.95.	E1	AO2	
	OR		1102	
	If the process is carried out a large number of			
	times, we would expect 95% of the confidence intervals obtained to contain μ .	[11]		
	intervals obtained to colltain μ .			

Qu. No.	Solution	Mark	AO	Notes
3(a)	H_0 : The petrol consumptions of models A and B are the same	B1	AO3	B0 for saying that the mean petrol
	H_1 : The petrol consumptions of models A and B are not the same	B1	AO3	consumption is the same For correctly identifying the alternative hypothesis as two-sided
(b)	From tables upper crit value $= 31$	B1	AO1	
	Therefore lower crit value = $36 - 31 = 5$	B1	AO2	
	The critical region is $(U \ge 31) \cup (U \le 5)$	B1	AO2	
(c)	Use of the formula $U = \sum \sum z_{ij}$	M1	AO3	
	U = 1 + 6 + 2 + 6 + 6 + 3 = 24	A1	AO1	
	The conclusion is that there is no difference in	B1	AO3	
	petrol consumption of the two models	B1	AO2	
	because 24 is not in the critical region.	[9]		
4(a)	$\hat{p} = \frac{1242}{1800} = 0.69$	B 1	AO3	
	$\text{ESE} = \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$			
	$=\sqrt{\frac{0.69 \times 0.31}{1800}}$	M1	AO1	
	= 0.0109(0107)	A1	AO1	
	95% confidence limits are $\hat{p} \pm z \times \text{ESE}$	M1	AO3	
	$0.69 \pm 1.96 \times 0.0109$	A1	AO2	
	giving [0.669,0.711]	A1	AO1	
	0.672 ± 0.732			
(b)(i)	$\hat{p} = \frac{0.672 + 0.732}{2} = 0.702$	B1	AO3	
	Number of people = $0.702 \times 1000 = 702$	B1	AO1	
(ii)	$0.732 - 0.672 = 2z \sqrt{\frac{0.702 \times 0.298}{1000}}$	M1	AO3	
	z = 2.07417	A1	AO1	
	Prob from tables = 0.98077	A1	AO1	
	or 0.98097 from calc			
	Confidence level = 96.2%	A1 [12]	AO2	

Qu. No.	Solution	Mark	AO	Notes
5(a)	$H_0: \mu_M = \mu_F; H_1: \mu_M \neq \mu_F$	B1	AO3	
(b)	Let X= male weight, Y=female weight ($\sum x = 39.2; \sum y = 46.6$)			
	$\overline{x} = 4.9;$	B1	AO1	
	$\overline{y} = 4.66$	B1	AO1	
	SE of diff of means= $\sqrt{\frac{0.5^2}{8} + \frac{0.5^2}{10}}$ = 0.237	M1 A1	AO2 AO1	Award m0 if no working seen
				Award nio n no working seen
	Test statistic = $\frac{4.9 - 4.66}{0.237}$	m1	AO1	From calculator, prob = 0.1558
	= 1.01 Prob from tables = 0.1562	A1 A1	AO1 AO1	FT 'their' test statistic From calculator, p -value = 0.3116
	p-value = 0.3124	B1	AO2	FT 'their' <i>p</i> -value
	Insufficient evidence to conclude that there is a difference in mean weight between males and	B1	AO3	
	females.	[10]		
6(a)	The differences are 5 –2 8 10 –6 12 –4 7 9 1	B1	AO3	
	The signs may be omitted at this stage. The ranks are 4 2 7 9 5 10 3 6 8 1	M1 A1	AO3 AO1	Attempting to rank absolute values All correct
	W = Sum of positive ranks = 4 + 7 + 9 +10 + 6 + 8 + 1 = 45 The critical value is 44.	M1 A1 B1	AO3 AO1 AO1	
(b)	The conclusion at this significance level is that Method B gives on average a higher reading than Method A	B1	AO3	
	because 45 > 44	E1 [8]	AO2	

Solution $ \overline{X} = \theta + 3(1 - 3\theta) + 5 \times 2\theta $ $ = 2\theta + 3 $ $ \overline{X} = \theta + 9(1 - 3\theta) + 25 \times 2\theta - (2\theta + 3)^{2} $ $ = \theta + 9 - 27\theta + 50\theta - 4\theta^{2} - 12\theta - 9 $ $ = 4\theta(3 - \theta) $ sider $E(V) = \frac{E(\overline{X}) - 3}{2} $ $ = \frac{2\theta + 3 - 3}{2} = \theta $ refore V is unbiased)	M1 A1 M1 A1 M1	AO1 AO1 AO2 AO2 AO2	
$X) = \theta + 9(1 - 3\theta) + 25 \times 2\theta - (2\theta + 3)^{2}$ = $\theta + 9 - 27\theta + 50\theta - 4\theta^{2} - 12\theta - 9$ = $4\theta(3 - \theta)$ sider $E(V) = \frac{E(\overline{X}) - 3}{2}$ = $\frac{2\theta + 3 - 3}{2} = \theta$	M1 A1	AO2 AO2	
$= \theta + 9 - 27\theta + 50\theta - 4\theta^2 - 12\theta - 9$ = $4\theta(3 - \theta)$ dider $E(V) = \frac{E(\overline{X}) - 3}{2}$ $= \frac{2\theta + 3 - 3}{2} = \theta$	A1	AO2	
$= 4\theta(3 - \theta)$ ider $E(V) = \frac{E(\overline{X}) - 3}{2}$ $= \frac{2\theta + 3 - 3}{2} = \theta$			
$=\frac{2\theta+3-3}{2}=\theta$	M1	AO2	
2			
refore v is undiased)	A1	AO2	
$V(V) = \frac{\operatorname{Var}(\overline{X})}{4}$	M1	AO3	
$=\frac{\theta(3-\theta)}{n}$	A1	AO1	
<i>Y</i> is $B(n,\theta)$	M1	AO3	
$p E(Y) = n\theta$	A1	AO2	
$E(W) = E\left(\frac{Y}{n}\right) = \theta$	A1	AO2	
refore W is unbiased)			
$\operatorname{ar}(W) = \frac{\operatorname{Var}(Y)}{n^2}$	M 1	AO2	
$=\frac{\theta(1-\theta)}{n}$	A1	AO1	
$\frac{\operatorname{ar}(V)}{\operatorname{ar}(W)} = \frac{\theta(3-\theta)}{n} \div \frac{\theta(1-\theta)}{n}$ $(3-\theta)$	M1	AO3	
$=\frac{\sqrt{1-\theta}}{(1-\theta)}$	A1	AO1	
lows that W is the better estimator	B1 B1 [17]	AO2 AO2	
1	$\frac{n}{P(W)} = \frac{\theta(3-\theta)}{n} \div \frac{\theta(1-\theta)}{n}$ $= \frac{(3-\theta)}{(1-\theta)}$	n $r(V) = \frac{\theta(3-\theta)}{n} \div \frac{\theta(1-\theta)}{n}$ $= \frac{(3-\theta)}{(1-\theta)}$ M1 A1 A1 ows that W is the better estimator it has the smaller variance B1 B1	$\frac{n}{r(V)} = \frac{\theta(3-\theta)}{n} \div \frac{\theta(1-\theta)}{n}$ $= \frac{(3-\theta)}{(1-\theta)}$ M1 AO3 $A1$ AO1 AO1 AO2 B1 AO2 AO2